
Efficiently Mining Maximal Frequent Itemsets

Karam Gouda
�

and Mohammed J. Zaki
�

�
Computer Science & Communication Engg. Dept., Kyushu University, Japan�

Computer Science Dept., Rensselaer Polytechnic Institute, USA
Email: kgouda@csce.kyushu-u.ac.jp, zaki@cs.rpi.edu

Abstract
We present GenMax, a backtrack search based algorithm

for mining maximal frequent itemsets. GenMax uses a num-
ber of optimizations to prune the search space. It uses
a novel technique called progressive focusing to perform
maximality checking, and diffset propagation to perform
fast frequency computation. Systematic experimental com-
parison with previous work indicates that different methods
have varying strengths and weaknesses based on dataset
characteristics. We found GenMax to be a highly efficient
method to mine the exact set of maximal patterns.

1 Introduction

Mining frequent itemsets is a fundamental and essential
problem in many data mining applications such as the dis-
covery of association rules, strong rules, correlations, multi-
dimensional patterns, and many other important discovery
tasks. The problem is formulated as follows: Given a large
data base of set of items transactions, find all frequent item-
sets, where a frequent itemset is one that occurs in at least a
user-specified percentage of the data base.

Many of the proposed itemset mining algorithms are a
variant of Apriori [2], which employs a bottom-up, breadth-
first search that enumerates every single frequent itemset.
In many applications (especially in dense data) with long
frequent patterns enumerating all possible ������� subsets
of a � length pattern (� can easily be 30 or 40 or longer)
is computationally unfeasible. Thus, there has been recent
interest in mining maximal frequent patterns in these ”hard”
dense databases. Another recent promising direction is to
mine only closed sets [9, 11]; a set is closed if it has no
superset with the same frequency. Nevertheless, for some
of the dense datasets we consider in this paper, even the set
of all closed patterns would grow to be too large. The only
recourse is to mine the maximal patterns in such domains.

In this paper we introduce GenMax, a new algorithm that
utilizes a backtracking search for efficiently enumerating all
maximal patterns. GenMax uses a number of optimizations
to quickly prune away a large portion of the subset search
space. It uses a novel progressive focusing technique to
eliminate non-maximal itemsets, and uses diffset propaga-
tion for fast frequency checking.

We conduct an extensive experimental characterization
of GenMax against state-of-the-art maximal pattern min-
ing methods like MaxMiner [3] and Mafia [4]. We found
that the three methods have varying performance depend-
ing on the database characteristics (mainly the distribution
of the maximal frequent patterns by length). We present a

systematic and realistic set of experiments showing under
which conditions a method is likely to perform well and un-
der what conditions it does not perform well. We conclude
that while Mafia is the best method for mining a superset
of all maximal patterns, GenMax is the current best method
for enumerating the exact set of maximal patterns. We fur-
ther observe that there is a type of data, where MaxMiner
delivers the best performance.

2 Preliminaries and Related Work
The problem of mining maximal frequent patterns can

be formally stated as follows: Let 	�

����������������������� ��� be
a set of � distinct items. Let � denote a database of trans-
actions, where each transaction has a unique identifier (tid)
and contains a set of items. The set of all tids is denoted�
���� �!� �"�����#�#�$� �"% � . A set &(')	 is also called an item-
set. An itemset with * items is called a * -itemset. The
set ��+,&.-/' �

, consisting of all the transaction tids which
contain X as a subset, is called the tidset of & . For con-
venience we write an itemset �!0��213�54 � as 06174 , and its
tidset �989� :;� <=�2> � as ��+,&?-@
�8�:A .

TID Items Frequent itemsets Maximal itemsets

1
2

3

4

5

6

ACTW

ACDTW

ACTW

CDW

ACDW

CDT

A, C, D, T, W

ACDW, ACTW

Itemset
 Size

1

2

3

4

Frequent itemsets

AC, AT, AW,
CD, CT, CW,
DW, TW

ACT, ACW,
ATW,CTW,
CDW,

ACTW

Min_Sup = 3 trans Min_Sup = 2 trans

A, C, D, T, W

AC, AD, AT, AW,
CD, CT, CW, DT,
DW, TW

ACD, ACT, ACW,
ADW, ATW, CDT,
CDW, CTW

Min_Sup=3 trans
Maximal itemsets
Min_Sup = 2 trans

ACTW

CDW

ACDW, ACTW

CDT

Figure 1. Mining Frequent Itemsets
The support of an itemset & , denoted CD+,&.- , is the num-

ber of transactions in which that itemset occurs as a subset.
Thus CD+,&.-E
GF ��+,&.-�F . An itemset is frequent if its support
is more than or equal to some threshold minimum support
(min sup) value, i.e., if CD+,&.-IH min sup. We denote by JEK
the set of frequent * -itemsets, and by FI the set of all fre-
quent itemsets. A frequent itemset is called maximal if it
is not a subset of any other frequent itemset. The set of all
maximal frequent itemsets is denoted as MFI. Given a user
specified min sup value our goal is to efficiently enumerate
all patterns in MFI.

Example 1 Consider our example database in Figure 1. There
are five different items, LNMPO�QSR�TUR"V/RXW@R Y�Z and six transactions[M\O^]�R _�R"`�R"a9R�b^R�c^Z . The figure also shows the frequent and
maximal d -itemsets at two different min sup values – 3 (50%) and
2 (30%) respectively.

Backtracking Search GenMax uses backtracking search
to enumerate the MFI. We first describe the backtracking
paradigm in the context of enumerating all frequent pat-
terns. We will subsequently modify this procedure to enu-
merate the MFI.

Backtracking algorithms are useful for many combina-
torial problems where the solution can be represented as
a set �
 �����A��� � ���$�#� � , where each ��� is chosen from a fi-
nite possible set, � � . Initially � is empty; it is extended
one item at a time, as the search space is traversed. The
length of � is the same as the depth of the corresponding
node in the search tree. Given a partial solution of length � ,
���D
 ��� � � �"�^���#�$�#�����	� � � , the possible values for the next item�
� comes from a subset 1��N'��
� called the combine set.
If �������D� 1�� , then nodes in the subtree with root node
���
)��� � ���������#�#�$� �
��� �!��� � will not be considered by the back-
tracking algorithm. Since such subtrees have been pruned
away from the original search space, the determination of1 � is also called pruning.

// Invoke as FI-backtrack(�AR���� R��)
FI-backtrack(���,R�T � R�!)
1. for each "$# T �
2. ���&% � M'�)(O�"=Z //also add �*�&% � to FI
3. + �&% � MPO�,.-/,0# T � and ,012"=Z
4. T �&% � = FI-combine (�3�&% � R�+4�&% �)
5. FI-backtrack(� �&% � , T �&% �2R�!65])

// Can � �&% � combine with other items in T � ?
FI-combine(���&% � R�+4�&% �)
1. TPM7�
2. for each ,0#8+9�&% �
3. if ���&% � (O�, Z is frequent
4. T M T:(/O�,BZ
5. return T

Figure 2. Backtrack Algorithm for Mining FI
Consider the backtracking algorithm for mining all fre-

quent patterns, shown in Figure 2. The main loop tries ex-
tending �/� with every item ; in the current combine set 1<� .
The first step is to compute �=�?> � , which is simply �/� ex-
tended with ; . The second step is to extract the new possi-
ble set of extensions, �@�A> � , which consists only of items �
in 1�� that follow ; . The third step is to create a new com-
bine set for the next pass, consisting of valid extensions. An
extension is valid if the resulting itemset is frequent. The
combine set, 1 �?> � , thus consists of those items in the possi-
ble set that produce a frequent itemset when used to extend
� �?> � . Any item not in the combine set refers to a pruned sub-
tree. The final step is to recursively call the backtrack rou-
tine for each extension. As presented, the backtrack method
performs a depth-first traversal of the search space.

Example 2 Consider the full subset search space shown in Fig-
ure 3. The backtrack search space can be considerably smaller
than the full space. For example, we start with �*BSMC� and T�BSM
�D� MPO�QER�TUR"V/RXW@R Y�Z . At level 1, each item in T B is added to � B
in turn. For example, Q is added to obtain � � M�O�QIZ . The possi-
ble set for Q , +D� MPO�T R�V/R W R Y Z consists of all items that followQ in T B . However, from Figure 1, we find that only Q T , Q@W , andQUY are frequent (at min sup=3), giving T@�DM�O�TUR�W@R�Y�Z . Thus
the subtree corresponding to the node QUV has been pruned.

Related Work Methods for finding the maximal elements
include All-MFS [5], which works by iteratively attempt-
ing to extend a working pattern until failure. A random-
ized version of the algorithm that uses vertical bit-vectors

was studied, but it does not guarantee every maximal pat-
tern will be returned. The Pincer-Search [7] algorithm uses
horizontal data format. It not only constructs the candidates
in a bottom-up manner like Apriori, but also starts a top-
down search at the same time, maintaining a candidate set
of maximal patterns. This can help in reducing the number
of database scans, by eliminating non-maximal sets early.
The maximal candidate set is a superset of the maximal pat-
terns, and in general, the overhead of maintaining it can be
very high. In contrast GenMax maintains only the current
known maximal patterns for pruning.

MaxMiner [3] is another algorithm for finding the max-
imal elements. It uses efficient pruning techniques to
quickly narrow the search. MaxMiner employs a breadth-
first traversal of the search space; it reduces database scan-
ning by employing a lookahead pruning strategy, i.e., if a
node with all its extensions can determined to be frequent,
there is no need to further process that node. It also em-
ploys item (re)ordering heuristic to increase the effective-
ness of superset-frequency pruning. Since MaxMiner uses
the original horizontal database format, it can perform the
same number of passes over a database as Apriori does.

DepthProject [1] finds long itemsets using a depth first
search of a lexicographic tree of itemsets, and uses a
counting method based on transaction projections along its
branches. This projection is equivalent to a horizontal ver-
sion of the tidsets at a given node in the search tree. Depth-
Project also uses the look-ahead pruning method with item
reordering. It returns a superset of the MFI and would re-
quire post-pruning to eliminate non-maximal patterns. FP-
growth [6] uses the novel frequent pattern tree (FP-tree)
structure, which is a compressed representation of all the
transactions in the database. It uses a recursive divide-and-
conquer and database projection approach to mine long pat-
terns. Nevertheless, since it enumerates all frequent patterns
it is impractical when pattern length is long.

Mafia [4] is the most recent method for mining the MFI.
Mafia uses three pruning strategies to remove non-maximal
sets. The first is the look-ahead pruning first used in
MaxMiner. The second is to check if a new set is subsumed
by an existing maximal set. The last technique checks if��+,&.- '���+FE - . If so X is considered together with Y for
extension. Mafia uses vertical bit-vector data format, and
compression and projection of bitmaps to improve perfor-
mance. Mafia mines a superset of the MFI, and requires
a post-pruning step to eliminate non-maximal patterns. In
contrast GenMax integrates pruning with mining and re-
turns the exact MFI.

3 GenMax for efficient MFI Mining

There are two main ingredients to develop an efficient
MFI algorithm. The first is the set of techniques used to
remove entire branches of the search space, and the second
is the representation used to perform fast frequency compu-
tations. We will describe below how GenMax extends the
basic backtracking routine for FI, and then the progressive
focusing and diffset propagation techniques it uses for fast
maximality and frequency checking.

The basic MFI enumeration code used in GenMax is a
straightforward extension of FI-backtrack. The main ad-
dition is the superset checking to eliminate non-maximal
itemsets, as shown in Figure 4. In addition to the main steps

A{C,T,W}

AC{T,W} AD{T,W} AT{W} AW

ACD{T,W} ACT{W} ACW

ACDT{W} ACDW ACTW

ADT ADW ATW

C{D,T,W}

CD{T,W} CT{W} CW

CDT{W}

CDTW

CDW

DT{W} DW TW

CTW DTW

D{TW} T{W} W

{}{A,C,D,T,W}

ADTW

ACDTW

Level

0

1

2

3

4

5

Figure 3. Subset/Backtrack Search Tree (min sup= 3): Circles indicate maximal sets and the infrequent sets have been
crossed out. Due to the downward closure property of support (i.e., all subsets of a frequent itemset must be frequent) the frequent
itemsets form a ���������	� (shown with the bold line), such that all frequent itemsets lie above the border, while all infrequent itemsets
lie below it. Since MFI determine the border, it is straightforward to obtain FI in a single database scan of MFI is known.

// Invocation: MFI-backtrack(�AR � � R��)
MFI-backtrack(���,R�T � R�!)
1. for each "$# T �
2. ���&% � M'��(O�"=Z
3. + �&% � MPO�, -=,0# T � and ,012"=Z
4.* if ���&% � (+4�&% � has a superset in MFI
5.* return //all subsequent branches pruned!
6. T �&% � = FI-combine (�3�&% � R�+4�&% �)
7.* if T �&% � is empty
8.* if ���&% � has no superset in MFI
9.* MFI= MFI (8���&% �
10. else MFI-backtrack(�*�&% � R T �&% � R
!65])

Figure 4. Backtrack Algorithm for Mining
MFI(* indicates a new line not in FI-backtrack)

in FI enumeration, the new code adds a step (line 4) after
the construction of the possible set to check if � �?> ��
 � �A> �
is subsumed by an existing maximal set. If so, the current
and all subsequent items in 1 � can be pruned away. After
creating the new combine set, if it is empty and � �?> � is not a
subset of any maximal pattern, it is added to the MFI. If the
combine set is non-empty a recursive call is made to check
further extensions.
Superset Checking Techniques: Checking to see if the
given itemset � �?> � combined with the possible set � �?> � is
subsumed by another maximal set was also proposed in
Mafia [4] under the name HUTMFI. Further pruning is pos-
sible if one can determine based just on support of the com-
bine sets if � �?> ��
 � �A> � will be guaranteed to be frequent. In
this case also one can avoid processing any more branches.
This method was first introduced in MaxMiner [3], and was
also used in Mafia under the name FHUT.
Reordering the Combine Set: Two general principles for
efficient searching using backtracking are that: 1) It is more
efficient to make the next choice of a subtree (branch) to
explore to be the one whose combine set has the fewest
items. This usually results in good performance, since it
minimizes the number of frequency computations in FI-
combine. 2) If we are able to remove a node as early as
possible from the backtracking search tree we effectively
prune many branches from consideration.

Reordering the elements in the current combine set to
achieve the two goals is a very effective means of cutting

A{D,T,W,C}

AD{T,W,C} AT{W,C} AW{C}

ADT{W,C} ADW{C} ADC ATW{C} AWC

D{T,W,C}

DT{W,C}

DTW{C} DTC

DW{C}

DWC

(a)

AC

(b)

DC

ADWC ATWC

ATC

T{W,C}

TWC

TW{C} TC

(c)

Figure 5. Backtracking Trees of Example 2

down the search space. The first heuristic is to reorder the
combine set in increasing order of support. This is likely
to produce small combine sets in the next level, since the
items with lower frequency are less likely to produce fre-
quent itemsets at the next level. This heuristic was first used
in MaxMiner, and has been used in other methods since
then [1, 4, 11].

In addition to sorting the initial combine set at level 0
in increasing order of support, GenMax uses another novel
reordering heuristic based on a simple lemma

Lemma 1 Let �9J +F;�-E
 �/��
 �2� J � ��; � is not frequent � ,
denote the set of infrequent 2-itemsets that contain an item
;:�?J � , and let � +�; - be the longest maximal pattern con-
taining ; . Then F � +F;�-�F���F J � F!� F �BJ +�;�-�F .

Assuming J � has been computed, reordering 1 � in de-
creasing order of �9J +F;�- (with ; � 1 �) ensures that the
smallest combine sets will be processed at the initial lev-
els of the tree, which result in smaller backtracking search
trees. GenMax thus initially sorts the items in decreasing
order of �9J +F;�- and in increasing order of support.

Example 3 For our database in Figure 1 with min sup = 2,
� ���	"�� is the same of all items "2# �D� , and the sorted order (on
support) is QER"V/RXW@R Y R"T . Figure 5 shows the backtracking search
trees for maximal itemsets containing prefix items Q and V . Un-
der the search tree for Q , Figure 5 (a), we try to extend the partial
solution Q V by adding to it item W from its combine set. We
try another item Y after itemset QUV3W turns out to be infrequent,

and so on. Since GenMax uses itemsets which are found earlier in
the search to prune the combine sets of later branches, after find-
ing the maximal set Q V�Y T , GenMax skips QUV�T . After findingQ@WUY T all the remaining nodes with prefix Q are pruned, and so
on. The pruned branches are shown with dashed arrows, indicating
that a large part of the search tree is pruned away

Theorem 1 (Correctness) MFI-backtrack returns all and
only the maximal frequent itemsets in the given database.

3.1 Optimizing GenMax

Superset Checking Optimization
The main efficiency of GenMax stems from the fact

that it eliminates branches that are subsumed by an already
mined maximal pattern. Were it not for this pruning, Gen-
Max would essentially default to a depth-first exploration of
the search tree. Before creating the combine set for the next
pass, in line 4 in Figure 4, GenMax check if � �?> �
 � �A> �
is contained within a previously found maximal set. If yes,
then the entire subtree rooted at � �A> � and including the el-
ements of the possible set are pruned. If no, then a new
extension is required. Another superset check is required at
line 8, when �/�?> � has no frequent extension, i.e., when the
combine set 1 �?> � is empty. Even though � �?> � is a leaf node
with no extensions it may be subsumed by some maximal
set, and this case is not caught by the check in line 4 above.

The major challenge in the design of GenMax is how to
perform this subset checking in the current set of maximal
patterns in an efficient manner. If we were to naively imple-
ment and perform this search two times on an ever expand-
ing set of maximal patterns MFI, and during each recursive
call of backtracking, we would be spending a prohibitive
amount of time just performing subset checks. Each search
would take

� +5F �����BF - time in the worst case, where MFI
is the current, growing set of maximal patterns. Note that
some of the best algorithms for dynamic subset testing run
in amortized time

� +�� 	 log 	!- per operation in a sequence
of 	 operations [8] (for us 	
 � +
������-). In dense do-
main we have thousands to millions of maximal frequent
itemsets, and the number of subset checking operations per-
formed would be at least that much. Can we do better?

The answer is, yes! Firstly, we observe that the two sub-
set checks (one on line 4 and the other on line 8) can be
easily reduced to only one check. Since � �?> �
 �
�?> � is a su-
perset of � �?> � , in our implementation we do superset check
only for �=�?> �
 �
�?> � . While testing this set, we store the
maximum position, say � , at which an item in �6�A> �
 �D�A> �
is not found in a maximal set � ������� . In other words,
all items before � are subsumed by some maximal set. For
the superset test for �/�?> � , we check if F �/�?> �9F�
�� . If yes,
� �?> � is non-maximal. If no, we add it to MFI.

The second observation is that performing superset
checking during each recursive call can be redundant. For
example, suppose that the cardinality of the possible set
� �?> � is � . Then potentially, MFI-backtrack makes � re-
dundant subset checks, if the current MFI has not changed
during these � consecutive calls. To avoid such redun-
dancy, a simple check status flag is used. If the flag is false,
no superset check is performed. Before each recursive call
the flag is false; it becomes true whenever 1 �?> � is empty,
which indicates that we have reached a leaf, and have to
backtrack.

// Invocation: LMFI-backtrack(�AR�� �2R �AR��)
// ���7� ��� is an output parameter
LMFI-backtrack(� � R T � R����7� ��� R�!)
1. for each "$# T��
2. �3�&% � M'��(O�";Z
3. +9�&% � MPO�, -=,0# T � and , 12"=Z
4. if ���&% � (+4�&% � has a superset in ���7� �*�
5. return //subsequent branches pruned!
6. * ���7� ���&% � M7�
7. T �&% � = FI-combine (�3�&% � R�+4�&% �)
8. if T �&% � is empty
9. if ���&% � has no superset in ��� � ���
10. ���7� � � M���� � � � (�� �&% �
11.* else ���7� �3�&% � M O�� #����7� ���$- "$#�� Z
12. LMFI-backtrack(� �&% �2R T �&% �2R����7� � �&% �5R�!65])
13.* ���7� �3�;M����7� ���6(����7� ���&% �
Figure 6. Mining MFI with Progressive Focus-
ing (* indicates a new line not in MFI-backtrack)

The
� +�� 	 log 	!- time bounds reported in [8] for dy-

namic subset testing do not assume anything about the se-
quence of operations performed. In contrast, we have full
knowledge of how GenMax generates maximal sets; we
use this observation to substantially speed up the subset
checking process. The main idea is to progressively nar-
row down the maximal itemsets of interest as recursive calls
are made. In other words, we construct for each invocation
of MFI-backtrack a list of local maximal frequent itemsets,� ��J � � . This list contains the maximal sets that can po-
tentially be supersets of candidates that are to be generated
from the itemset �/� . The only such maximal sets are those
that contain all items in �/� . This way, instead of check-
ing if � �?> �
 �D�A> � is contained in the full current MFI, we
check only in

� ��J �=� – the local set of relevant maximal
itemsets. This technique, that we call progressive focusing,
is extremely powerful in narrowing the search to only the
most relevant maximal itemsets, making superset checking
practical on dense datasets.

Figure 6 shows the pseudo-code for GenMax that incor-
porates this optimization (the code for the first two opti-
mizations is not show to avoid clutter). Before each in-
vocation of LMFI-backtrack a new

� ��J � �?> � is created,
consisting of those maximal sets in the current

� ��J �6� that
contain the item ; (see line 10). Any new maximal itemsets
from a recursive call are incorporated in the current

� ��J � �
at line 12.

Frequency Testing Optimization
So far GenMax, as described, is independent of the data

format used. The techniques can be integrated into any of
the existing methods for mining maximal patterns. We now
present some data format specific optimizations for fast fre-
quency computations.

GenMax uses a vertical database format, where we have
available for each item its tidset, the set of all transaction
tids where it occurs. The vertical representation has the fol-
lowing major advantages over the horizontal layout: Firstly,
computing the support of itemsets is simpler and faster with
the vertical layout since it involves only the intersections
of tidsets (or compressed bit-vectors if the vertical format
is stored as bitmaps [4]). Secondly, with the vertical lay-
out, there is an automatic “reduction” of the database be-
fore each scan in that only those itemsets that are relevant

to the following scan of the mining process are accessed
from disk. Thirdly, the vertical format is more versatile in
supporting various search strategies, including breadth-first,
depth-first or some other hybrid search.

// Can ���&% � combine with other items in T
� ?
FI-tidset-combine(� �&% � R�+9�&% �)
1. T M �
2. for each ,0#$+9�&% �
3.* ,�� M',
4.*

� �	, � � M � �	���&% � ��� � �	, �
5.* if � � �	, � ����� min sup
6. TPM T:(/O�, � Z
7. return T

Figure 7. FI-combine Using Tidset Intersec-
tions (* indicates a new line not in FI-combine)

Let’s consider how the FI-combine (see Figure 2) routine
works, where the frequency of an extension is tested. Each
item ; in 1)� actually represents the itemset �=�
 �=; � and
stores the associated tidset for the itemset � �
 �/; � . For the
initial invocation, since � � is empty, the tidset for each item
; in 1 � is identical to the tidset, ��+F;�- , of item ; . Before line
3 is called in FI-combine, we intersect the tidset of the ele-
ment � �A> � (i.e., ��+F� �	
 �=; � -) with the tidset of element � (i.e.,��+F� �
 �/� � -). If the cardinality of the resulting intersection
is above minimum support, the extension with � is frequent,
and �
	 the new intersection result, is added to the combine
set for the next level. Figure 7 shows the pseudo-code for
FI-tidset-combine using this tidset intersection based sup-
port counting.

In Charm [11] we first introduced two new properties of
itemset-tidset pairs which can be used to further increase the
performance. Consider the items ; and � in 1 � . If during
intersection in line 4 in Figure 7, we discover that ��+�; - – or
equivalently ��+ �/�?> ��- – is a subset of or equal to ��+F�;- , then
we do not add ��	 to the combine set, since in this case, ;
always occurs along with � . Instead of adding ��	 to the
combine set, we add it to �=�A> � . This optimization was also
used in Mafia [4] under the name PEP.
Diffsets Propagation Despite the many advantages of the
vertical format, when the tidset cardinality gets very large
(e.g., for very frequent items) the intersection time starts
to become inordinately large. Furthermore, the size of in-
termediate tidsets generated for frequent patterns can also
become very large to fit into main memory. GenMax uses a
new format called diffsets [10] for fast frequency testing.

The main idea of diffsets is to avoid storing the entire
tidset of each element in the combine set. Instead we keep
track of only the differences between the tidset of itemset
� � and the tidset of an element ; in the combine set (which
actually denotes � �
 �/; �). These differences in tids are
stored in what we call the diffset, which is a difference of
two tidsets at the root level or a difference of two diffsets at
later levels. Furthermore, these differences are propagated
all the way from a node to its children starting from the root.
In an extensive study [10], we showed that diffsets are very
short compared to their tidsets counterparts, and are highly
effective in improving the running time of vertical methods.

We describe next how they are used in GenMax, with the
help of an example. At level 0, we have available the tidsets
for each item in J � . When we invoke FI-combine at this
level, we compute the diffset of �
	 , denoted as � +F��	 - instead

// Can ���&% � combine with other items in TD� ?
FI-diffset-combine(� �&% � R�+4�&% �)
1. T M �
2. for each ,0#$+9�&% �
3. , � M ,
4. if level == 0 then ���	, � � M � �	�3�&% � �
� � �	, �
5. else ���	, � � M����	, �������	���&% � �
6. if � �	, � ��� min sup
7. TPM T:(/O�, � Z
8. return T

Figure 8. FI-combine: Diffset Propagation

of computing the tidset of � as shown in line 4 in Figure 7.
That is � +F��	 -@
���+F;�- � ��+F� - . The support of ��	 is now given
as CD+�� 	 -3
 CD+F;�-U��F ��+�� 	 -�F . At subsequent levels, we have
available the diffsets for each element in the combine list. In
this case � +F��	#-U
�� +F� -D����+�; - , but the support is still given
as CD+�� 	 -
�CD+�; - � F ��+�� 	 -�F . Figure 8 shows the pseudo-code
for computing the combine sets using diffsets.

GenMax:
1. Compute J � and J �
3. Compute �BJ +�; - for each item ; � J �
4. Sort J@� (decreasing in �BJ +�; - , increasing in CD+F;�-)
5. �����
��
6. LMFI-backtrack(� �5J � � �����^���) //use diffsets
7. return MFI

Figure 9. The GenMax Algorithm
Final GenMax Algorithm The complete GenMax algo-
rithm is shown in Figure 9, which ties in all the optimiza-
tions mentioned above. GenMax assumes that the input
dataset is in the vertical tidset format. First GenMax com-
putes the set of frequent items and the frequent 2-itemsets,
using a vertical-to-horizontal recovery method [10]. This
information is used to reorder the items in the initial com-
bine list to minimize the search tree size that is generated.
GenMax uses the progressive focusing technique of LMFI-
backtrack, combined with diffset propagation of FI-diffset-
combine to produce the exact set of all maximal frequent
itemsets, MFI.

4 Experimental Results
Past work has demonstrated that DepthProject [1] is

faster than MaxMiner [3], and the latest paper shows that
Mafia [4] consistently beats DepthProject. In out experi-
mental study below, we retain MaxMiner for baseline com-
parison. At the same time, MaxMiner shows good perfor-
mance on some datasets, which were not used in previous
studies. We use Mafia as the current state-of-the-art method
and show how GenMax compares against it.

All our experiments were performed on a 400MHz Pen-
tium PC with 256MB of memory, running RedHat Linux
6.0. For comparison we used the original source or ob-
ject code for MaxMiner [3] and MAFIA [4], provided to
us by their authors. Timings in the figures are based on total
wall-clock time, and include all preprocessing costs (such
as horizontal-to-vertical conversion in GenMax and Mafia).
The times reported also include the program output. We
believe our setup reflects realistic testing conditions (as op-
posed to some previous studies which report only the CPU
time or may not include output cost).
Benchmark Datasets: We chose several real and syn-
thetic datasets for testing the performance of the the al-

Database I AL R MPL
chess 76 37 3,196 23 (20%)
connect 130 43 67,557 31 (2.5%)
mushroom 120 23 8,124 22 (0.025%)
pumsb* 7117 50 49,046 43 (2.5%)
pumsb 7117 74 49,046 27 (40%)
T10I4D100K 1000 10 100,000 13 (0.01%)
T40I10D100K 1000 40 100,000 25 (0.1%)

Figure 10. Database Characteristics: � denotes
the number of items, Q � the average length of a record,�

the number of records, and �7+�� the maximum pattern
length at the given min sup.

gorithms, shown in Table 10. The real datasets have been
used previously in the evaluation of maximal patterns [1, 3,
4]. Typically, these real datasets are very dense, i.e., they
produce many long frequent itemsets even for high val-
ues of support. The table shows the length of the longest
maximal pattern (at the lowest minimum support used in
our experiments) for the different datasets. For exam-
ple on pumsb*, the longest pattern was of length 43 (any
method that mines all frequent patterns will be impracti-
cal for such long patterns). We also chose two synthetic
datasets, which have been used as benchmarks for testing
methods that mine all frequent patterns. Previous maxi-
mal set mining algorithms have not been tested on these
datasets, which are sparser compared to the real sets. All
these datasets are publicly available from IBM Almaden
(www.almaden.ibm.com/cs/quest/demos.html).

While conducting experiments comparing the 3 different
algorithms, we observed that the performance can vary sig-
nificantly depending on the dataset characteristics. We were
able to classify our benchmark datasets into four classes
based on the distribution of the maximal frequent patterns.

Type I Datasets: Chess and Pumsb
Figure 11 shows the performance of the three algorithms

on chess and pumsb. These Type I datasets are character-
ized by a symmetric distribution of the maximal frequent
patterns (leftmost graph). Looking at the mean of the curve,
we can observe that for these datasets most of the maximal
patterns are relatively short (average length 11 for chess and
10 for pumsb). The MFI cardinality figures on top center
and right, show that for the support values shown, the MFI
is 2 orders of magnitude smaller than all frequent itemsets.

Compare the total execution time for the different algo-
rithms on these datasets (center and rightmost graphs). We
use two different variants of Mafia. The first one, labeled
Mafia, does not return the exact maximal frequent set, rather
it returns a superset of all maximal patterns. The second
variant, labeled MafiaPP, uses an option to eliminate non-
maximal sets in a post-processing (PP) step. Both GenMax
and MaxMiner return the exact MFI.

On chess we find that Mafia (without PP) is the fastest
if one is willing to live with a superset of the MFI. Mafia
is about 10 times faster than MaxMiner. However, notice
how the running time of MafiaPP grows if one tries to find
the exact MFI in a post-pruning step. GenMax, though
slower than Mafia is significantly faster than MafiaPP and
is about 5 times better than MaxMiner. All methods, except
MafiaPP, show an exponential growth in running time (since

the y-axis is in log-scale, this appears linear) faithfully fol-
lowing the growth of MFI with lowering minimum sup-
port, as shown in the top center and right figures. MafiaPP
shows super-exponential growth and suffers from an ap-
proximately

� + F �����9F � - overhead in pruning non-maximal
sets and thus becomes impractical when MFI becomes too
large, i.e., at low supports.

On pumsb, we find that GenMax is the fastest, having a
slight edge over Mafia. It is about 2 times faster than Mafi-
aPP. We observed that the post-pruning routine in MafiaPP
works well till around

� +"8 � � - maximal itemsets. Since at
60% min sup we had around that many sets, the overhead
of post-processing was not significant. With lower support
the post-pruning cost becomes significant, so much so that
we could not run MafiaPP beyond 50% minimum support.
MaxMiner is significantly slower on pumsb; a factor of 10
times slower then both GenMax and Mafia.

Type I results substantiate the claim that GenMax is an
highly efficient method to mine the exact MFI. It is as fast
as Mafia on pumsb and within a factor of 2 on chess. Mafia,
on the other hand is very effective in mining a superset of
the MFI. Post-pruning, in general, is not a good idea, and
GenMax beats MafiaPP with a wide margin (over 100 times
better in some cases, e.g., chess at 20%). On Type I data
MaxMiner is noncompetitive.

Type II Datasets: Connect and Pumsb*
Type II datasets, as shown in Figure 12 are characterized

by a left-skewed distribution of the maximal frequent pat-
terns, i.e., there is a relatively gradual increase with a sharp
drop in the number of maximal patterns. The mean pattern
length is also longer than in Type I datasets; it is around 16
or 17. The MFI cardinality is also drastically smaller than
FI cardinality; by a factor of 8 � �

or more (in contrast, for
Type I data, the reduction was only 8 � �).

The main performance trend for both Type II datasets
is that Mafia is the best till the support is very low, at
which point there is a cross-over and GenMax outperforms
Mafia. MafiaPP continues to be favorable for higher sup-
ports, but once again beyond a point post-pruning costs start
to dominate. MafiaPP could not be run beyond the plotted
points. MaxMiner remains noncompetitive (about 10 times
slower). The initial start-up time for Mafia for creating the
bit-vectors is responsible for the high offset at 50% support
on pumsb*. GenMax appears to exhibit a more graceful
increase in running time than Mafia.

Type III Datasets: T10I4 and T40I10
As depicted in Figure 13, Type III datasets – the two

synthetic ones – are characterized by an exponentially de-
caying distribution of the maximal frequent patterns. Ex-
cept for a few maximal sets of size one, the vast majority of
maximal patterns are of length two! After that the number
of longer patterns drops exponentially. The mean pattern
length is very short compared to Type I or Type II datasets;
it is around 4-6. MFI cardinality is not much smaller than
the cardinality of all frequent patterns. The difference is
only a factor of 10 compared to a factor of 100 for Type I
and a factor of 10,000 for Type II.

Comparing the running times we observe that MaxMiner
is the best method for this type of data. The breadth-first
or level-wise search strategy used in MaxMiner is ideal for

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25

F
re

q
u
e
n
c
y

Length

maximal itemset distribution

chess(40%)
pumsb(60%)

0.1

1

10

100

1000

10000

2025303540455055606570

T
o

ta
l
T

im
e

 (
s
e

c
)

Minimum Support (%)

chess

MaxMiner
MafiaPP
GenMax

Mafia

1

10

100

1000

10000

100000

405060708090100

T
o

ta
l
T

im
e

 (
s
e

c
)

Minimum Support (%)

pumsb

MaxMiner
MafiaPP
GenMax

Mafia

Figure 11. Type I Datasets (chess and pumsb)

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30 35 40

F
re

q
u
e
n
c
y

Length

maximal itemset distribution

connect(20%)
pumsb*(7.5%)

1

10

100

1000

10000

0102030405060708090100

T
o

ta
l
T

im
e

 (
s
e

c
)

Minimum Support (%)

connect

MaxMiner
MafiaPP
GenMax

Mafia

1

10

100

1000

10000

05101520253035404550

T
o

ta
l
T

im
e

 (
s
e

c
)

Minimum Support (%)

pumsb*

MaxMiner
MafiaPP
GenMax

Mafia

Figure 12. Type II Datasets (connect and pumsb*)

0

5000

10000

15000

20000

25000

30000

35000

0 2 4 6 8 10 12 14 16 18

F
re

q
u
e
n
c
y

Length

maximal itemset distribution

T10(0.025%)
T40(0.7125%)

1

10

100

1000

10000

00.020.040.060.080.10.120.140.16

T
o

ta
l
T

im
e

 (
s
e

c
)

Minimum Support (%)

T10I4D100K

MaxMiner
MafiaPP
GenMax

Mafia

10

100

1000

10000

0.20.40.60.811.21.41.61.82

T
o

ta
l
T

im
e

 (
s
e

c
)

Minimum Support (%)

T40I10D100K

MaxMiner
MafiaPP
GenMax

Mafia

Figure 13. Type III Datasets (T10 and T40)

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25

F
re

q
u
e
n
c
y

Length

maximal itemset distribution

mushroom(0.1%)
mushroom(0.075%)

0.1

1

10

100

0.010.1110

T
o

ta
l
T

im
e

 (
s
e

c
)

Minimum Support (%)

mushroom

MaxMiner
MafiaPP
GenMax
GenMax’

Mafia

Figure 14. Type IV Dataset (mushroom)

very bushy search trees, and when the average maximal pat-
tern length is small. Horizontal methods are better equipped
to cope with the quadratic blowup in the number of fre-
quent 2-itemsets since one can use array based counting

to get their frequency. On the other hand vertical meth-
ods spend much time in performing intersections on long
item tidsets or bit-vectors. GenMax gets around this prob-
lem by using the horizontal format for computing frequent

2-itemsets (denoted J@�), but it still has to spend time per-
forming

� +5F J@�BF - pairwise tidset intersections.
Mafia on the other hand performs

� +5F J � F � - intersections,
where J � is the set of frequent items. The overhead cost is
enough to render Mafia noncompetitive on Type III data. On
T10 Mafia can be 20 or more times slower than MaxMiner.
GenMax exhibits relatively good performance, and it is
about 10 times better than Mafia and 2 to 3 times worse
than MaxMiner. On T40, the gap between GenMax/Mafia
and MaxMiner is smaller since there are longer maximal
patterns. MaxMiner is 2 times better than GenMax and 5
times better than Mafia. Since the MFI cardinality is not
too large MafiaPP has almost the time as Mafia for high
supports. Once again MafiaPP could not be run for lower
support values. It is clear that, in general, post-pruning is
not a good idea; the overhead is too much to cope with.

Type IV Dataset: Mushroom
Mushroom exhibits a very unique MFI distribution.

Plotting MFI cardinality by length, we observe in Figure 14
that the number of maximal patterns remains small until
length 19. Then there is a sudden explosion of maximal pat-
terns at length 20, followed by another sharp drop at length
21. The vast majority of maximal itemsets are of length 20.
The average transaction length for mushroom is 23 (see Ta-
ble 10), thus a maximal pattern spans almost a full transac-
tion. The total MFI cardinality is about 1000 times smaller
than all frequent itemsets.

On Type IV data, Mafia performs the best. MafiaPP and
MaxMiner are comparable at lower supports. This data
is the worst for GenMax, which is 2 times slower than
MaxMiner and 4 times slower than Mafia. In Type IV
data, a smaller itemset is part of many maximal itemsets
(of length 20 in case of mushroom); this renders our pro-
gressive focusing technique less effective. To perform max-
imality checking one has to test against a large set of maxi-
mal itemsets; we found that GenMax spends half its time in
maximality checking. Recognizing this helped us improve
the progressive focusing using an optimized intersection-
based method (as opposed to the original list based ap-
proach). This variant, labeled GenMax’, was able to cut
down the execution time by half. GenMax’ runs in the same
time as MaxMiner and MafiaPP.

5 Conclusions

This is one of the first papers to comprehensively com-
pare recent maximal pattern mining algorithms under realis-
tic assumptions. Our timings are based on wall-clock time,
we included all pre-processing costs, and also cost of out-
putting all the maximal itemsets (written to a file). We were
able to distinguish four different types of MFI distributions
in our benchmark testbed. We believe these distributions
to be fairly representative of what one might see in prac-
tice, since they span both real and synthetic datasets. Type
I is a normal MFI distribution with not too long maximal
patterns, Type II is a left-skewed distributions, with longer
maximal patterns, Type III is an exponential decay distri-
bution, with extremely short maximal patterns, and finally
Type IV is an extreme left-skewed distribution, with very
large average maximal pattern length.

We noted that different algorithms perform well under
different distributions. We conclude that among the current

methods, MaxMiner is the best for mining Type III distri-
butions. On the remaining types, Mafia is the best method
if one is satisfied with a superset of the MFI. For very low
supports on Type II data, Mafia loses its edge. Post-pruning
non-maximal patterns typically has high overhead. It works
only for high support values, and MafiaPP cannot be run be-
yond a certain minimum support value. GenMax integrates
pruning of non-maximal itemsets in the process of mining
using the novel progressive focusing technique, along with
other optimizations for superset checking; GenMax is the
best method for mining the exact MFI.

Our work opens up some important avenues of future
work. The IBM synthetic dataset generator appears to be
too restrictive. It produces Type III MFI distributions. We
plan to develop a new generator that the users can use to
produce various kinds of MFI distributions. This will help
provide a common testbed against which new algorithms
can be benchmarked. Knowing the conditions under which
a method works well or does not work well is an impor-
tant step in developing new solutions. In contrast to pre-
vious studies we were able to isolate these conditions for
the different algorithms. For example, we were able to im-
prove the performance of GenMax’ to match MaxMiner on
mushroom dataset. Another obvious avenue of improving
GenMax and Mafia is to efficiently handle Type III data. It
seems possible to combine the strengths of the three meth-
ods into a single hybrid algorithm that uses the horizontal
format when required and uses bit-vectors/diffsets or per-
haps bit-vectors of diffsets in other cases or in combination.
We plan to investigate this in the future.

Acknowledgments We would like to thank Roberto Bayardo for
providing us the MaxMiner algorithm and Johannes Gehrke for
the MAFIA algorithm.

References
[1] R. Agrawal, C. Aggarwal, and V. Prasad. Depth First Gener-

ation of Long Patterns. In ACM SIGKDD Conf., Aug. 2000.
[2] R. Agrawal, et al. Fast discovery of association rules. In

Advances in Knowledge Discovery and Data Mining, AAAI
Press, 1996.

[3] R. J. Bayardo. Efficiently mining long patterns from
databases. In ACM SIGMOD Conf., June 1998.

[4] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: a maximal
frequent itemset algorithm for transactional databases. In
Intl. Conf. on Data Engineering, Apr. 2001.

[5] D. Gunopulos, H. Mannila, and S. Saluja. Discovering all
the most specific sentences by randomized algorithms. In
Intl. Conf. on Database Theory, Jan. 1997.

[6] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In ACM SIGMOD Conf., May 2000.

[7] D.-I. Lin and Z. M. Kedem. Pincer-search: A new algorithm
for discovering the maximum frequent set. In Intl. Conf. Ex-
tending Database Technology, Mar. 1998.

[8] D. Yellin. An algorithm for dynamic subset and intersection
testing. Theoretical Computer Science, 129:397–406, 1994.

[9] M. J. Zaki. Generating non-redundant association rules. In
ACM SIGKDD Conf., Aug. 2000.

[10] M. J. Zaki and K. Gouda. Fast vertical mining using Diffsets.
TR 01-1, CS Dept., RPI, Mar. 2001.

[11] M. J. Zaki and C.-J. Hsiao. CHARM: An efficient algorithm
for closed association rule mining. TR 99-10, CS Dept., RPI,
Oct. 1999.

